Линейная функция. Прямая пропорциональность. Обратная пропорциональность.

 

Линейная функция

Линейная функция – это функция, которую можно задать формулой y = kx + b,

где x – независимая переменная, k и b – некоторые числа.

Графиком линейной функции является прямая.


 
 Число k называют угловым коэффициентом прямой – графика функции y = kx + b. 

Если k > 0, то угол наклона прямой y = kx + b к оси х острый; если k < 0, то этот угол тупой.

Если угловые коэффициенты прямых, являющихся графиками двух линейных функций, различны, то эти прямые пересекаются. А если угловые коэффициенты одинаковы, то прямые параллельны.

График функции y = kx + b, где k ≠ 0, есть прямая, параллельная прямой y = kx.

 

Прямая пропорциональность.

Прямой пропорциональностью называется функция, которую можно задать формулой y = kx, где х – независимая переменная, k – не равное нулю число. Число k называют коэффициентом прямой пропорциональности.

График прямой пропорциональности представляет собой прямую, проходящую через начало координат (см.рисунок).

Прямая пропорциональность является частным случаем линейной функции.

Свойства функции y = kx:

1. Область определения функции - множество всех действительных чисел.

2. Это нечетная функция.

3. Переменные изменяются прямо пропорционально на всей числовой прямой: при возрастании аргумента функция пропорционально возрастает, при убывании аргумента функция пропорционально убывает.


 

Обратная пропорциональность

Обратной пропорциональностью называется функция, которую можно задать формулой:

        k
 
y = —
       
x

где x – независимая переменная, а k – не равное нулю число.

Графиком обратной пропорциональности является кривая, которую называют гиперболой (см.рисунок).

Для кривой, которая является графиком этой функции, оси x и y выступают в роли асимптот. Асимптота – это прямая, к которой приближаются точки кривой по мере их удаления в бесконечность.

                                          k
Свойства функции
y = —:
                                          x

1. Область определения функции - множество всех действительных чисел, кроме нуля.

2. Это нечетная функция.

3. При возрастании аргумента функция пропорционально убывает, при убывании аргумента функция пропорционально возрастает.

 

 

Сделать бесплатный сайт с uCoz