Простейшие тригонометрические уравнения 


Тригонометрическое уравнение – это уравнение, содержащее неизвестное под знаком тригонометрической функции.

Простейшими тригонометрическими уравнениями называют уравнения вида
sin x = a, cos x = a, tg x = a, ctg x = a, где a – действительное число (a R).

 

Уравнение cos x = a.

Принцип:

arccos a = x.

Следовательно, cos x = a.

Условия: модуль а не больше 1;  x не меньше 0, но не больше π

(| a | ≤ 1;  0 ≤ x  ≤ π)

 

Формулы:

                                        
                                           x = ± arccos a  +  2πk,     где k – любое целое число

                                           arccos (-a) = π – arccos a,    где 0 ≤ a ≤ 1

 

Пример 1: Решим уравнение

                √3
cos x  =  ——.
                 2

Решение.

Применим первую формулу:

                      √3
x = ± arccos —— + 2πk
                      2

Сначала находим значение арккосинуса:

             √3       π
arccos —— = —
              2        6

Осталось подставить этот число в нашу формулу:

            π
x = ± —— + 2πk
            6

Пример решен.

 

Пример 2: Решим уравнение

                  √3
cos x  =  – ——.
                   2

Решение.

Сначала применим первую формулу из таблицы:

                        √3
x = ± arccos (– —) + 2πk
                         2

Теперь с помощью второго уравнения вычислим значение арккосинуса:

                 √3                         √3                 π        π        π       6π       π         5π
arccos (– ——) = π – arcos ——  =  π  –  —  =  —  –  —  =  —  –  —  =  ——
                  2                           2                   6        1        6        6        6          6

Применяя формулу для -а, обращайте внимание на знак а: он меняется на противоположный.

Осталось подставить значение арккосинуса и решить пример:

           5π
x = ± —— + 2πk
            6

Пример решен.

 

Уравнение sin x = a.

Принцип:

arcsin a = x,

следовательно sin x = a.

Условия: модуль а не больше 1;  x в отрезке [-π/2; π/2]

(| a | ≤ 1;  –π/2 ≤ x  ≤ π/2)

 

Формулы.

(1 из 3)


x = arcsin a  +  2πk

x = π – arcsin a  +  2πk

 

Эти две формулы можно объединить в одну:
x = (–1)n arcsin a + πn

 

(k – любое целое число;  n – любое целое число; | a | ≤ 1)

Значение четного n: n = 2k

Значение нечетного n: n = 2k + 1

Если n – четное число, то получается первая формула.

Если n – нечетное число, то получается вторая формула.

                                                                  √3
Пример 1: Решить уравнение sin x  =  ——
                                                                  2

Решение.

Применяем первые две формулы:

                        √3
1) x  =  arcsin —— + 2πk
                         2

                              √3
2) x  =  π – arcsin —— + 2πk
                               2

Находим значение арксинуса:

             √3        π
arcsin ——  =  —
             2          3

Осталось подставить это значение в наши формулы:

            π
1) x =  — + 2πk
           3

 

                 π                   2π
2) x =  π – —  + 2πk = —— + 2πk
                 3                    3

Пример решен.

 

Пример 2: Решим это же уравнение с помощью общей формулы.

Решение.

               π
x = (–1)n — + πn
               3

Пояснение: если n будет четное число, то решение примет вид № 1; если n будет нечетным числом – то вид №2.

Пример решен.

 

(2 из 3)
Для трех случаев есть и более простые решения:

Если sin x = 0,  то x = πk

Если sin x = 1,  то x = π/2 + 2πk

Если sin x = –1,  то x = –π/2 + 2πk

 

Пример 1: Вычислим arcsin 0.

Решение.

Пусть arcsin 0 = x.

Тогда sin x = 0, при этом x ∈ [–π/2; π/2].

Синус 0 тоже равен 0. Значит:

x = 0.

Итог:

arcsin 0 = 0.

Пример решен.

 

Пример 2: Вычислим arcsin 1.

Решение.

Пусть arcsin 1 = x.

Тогда sin x = 1.

Число 1 на оси ординат имеет имя π/2. Значит:

arcsin 1 = π/2.

Пример решен.

 

(3 из 3)


arcsin (–a) = –arcsin a

 

Пример: Решить уравнение

                √3
sin x = – ——
                2

Решение.

Применяем формулы:

                          √3
1) x = arcsin (– ——) + 2πk
                           2

                                √3
2) x = π – arcsin (– ——) + 2πk
                                 2

Находим значение арксинуса:

                 √3                        √3           π
arcsin (– ——) = – arcsin (——) = – —
                  2                          2             3

Подставляем это значение arcsin в обе формулы:

              π
1) x = – — + 2πk
              3
                     π                         π                    4π
2) x = π – (– —) + 2πk = π +  —  +  2πk = ——  +  2πk
                     3                         3                     3

Пример решен.

 

Уравнение tg x = a.

Принцип:

arctg a = x,

следовательно tg x = a.

Условие: x больше –π/2, но меньше π/2

(–π/2 < x < π/2)

 

Формулы.

(1)

 x = arctg a + πk

где k – любое целое число (k ∈ Z)

 

(2)


arctg (–a) = –arctg a


Пример 1
: Вычислить arctg 1.

Решение.

Пусть arctg 1 = x.

Тогда tg x = 1,  при этом x ∈ (–π/2; π/2)

Следовательно:

       π                       π
x = —    при этом  — ∈ (–π/2; π/2)
       4                       4

                            π
Ответ: arctg 1 = —
                            4

 

Пример 2: Решить уравнение tg x = –√3.

Решение.

Применяем формулу:

x = arctg (–√3) + πk

Решаем:

arctg (–√3) = –arctg √3 = –π/3.

Подставляем:

x = –π/3 + πk.

Пример решен.

 

Уравнение ctg x = a.

Принцип:

arcctg a = x,

следовательно ctg x = a.

Условие: x больше 0, но меньше π

(0 < x < π)

 

Формулы.

(1)

x = arcctg a + πk

(k ∈ Z)

 

(2)


arcctg (a) = π – arcctg а

                                                 
Пример 1: Вычислить arcctg √3.

Решение.

Следуем принципу:

arcctg √3 = х

ctg х = √3.

х = π/6.

Ответ: arcctg √3 = π/6

Пример 2: Вычислить arcctg (–1).

Решение.

Применяя формулу (2), обращайте внимание на знак а: он меняется на противоположный. В нашем примере –1 меняется на 1:

arcctg (–1) = π – arcctg 1 = π – π/4 = 3π/4.

Пример решен.

 

 

 

 

 

 

Сделать бесплатный сайт с uCoz