Функции y = sin x, y = cos x, y = mf(x), y = f(kx), y = tg x, y = ctg x


Функция y = sin x

Графиком функции является синусоида.

Полную неповторяющуюся часть синусоиды называют волной синусоиды.

Половину волны синусоиды называют полуволной синусоиды (или аркой).

 
Свойства функции
y = sin x:

1) Область определения функции – множество действительных чисел.

2) Область значений функции – отрезок [–1; 1]

3) Это нечетная функция.

4) Это непрерывная функция.

5) Координаты точек пересечения графика:
    - с осью абсцисс: (πn; 0),
    - с осью ординат: (0; 0).

6) На отрезке [-π/2; π/2] функция возрастает, на отрезке [π/2; 3π/2] – убывает.

7) На промежутках [2πn; π + 2πn] функция принимает положительные значения.
    На промежутках [-π + 2πn; 2πn] функция принимает отрицательные значения.

8) Промежутки возрастания функции: [-π/2 + 2πn; π/2 + 2πn].
    Промежутки убывания функции: [π/2 + 2πn; 3π/2 + 2πn].

9) Точки минимума функции: -π/2 + 2πn.
    Точки максимума функции: π/2 + 2πn

10) Функция ограничена сверху и снизу. Наименьшее значение функции –1,
      наибольшее значение 1.

11) Это периодическая функция с периодом 2π (Т = 2π)

 

Для построения графика функции y = sin x удобно применять следующие масштабы:

- на листе в клетку за единицу отрезка примем длину в две клетки.

- на оси x отмерим длину π. При этом для удобства 3,14 представим в виде 3 – то есть без дроби. Тогда на листе в клетку π составит 6 клеток (трижды по 2 клетки). А каждая клетка получит свое закономерное имя (от первой до шестой): π/6, π/3, π/2, 2π/3, 5π/6, π. Это значения x.

- на оси y отметим 1, включающий две клетки.

 

Составим таблицу значений функции, применяя наши значения x:

 
x

 

0

π

6

π

3

π

2



3



6

 
π

 
y

 
0

1

2

√3

2

 
1

√3

2

1

2

 
0

Далее составим график. Получится полуволна, наивысшая точка которой (π/2; 1). Это график функции y = sin x на отрезке [0; π]. Добавим к построенному графику симметричную полуволну (симметричную относительно начала координат, то есть на отрезке -π). Гребень этой полуволны – под осью x с координатами (-1; -1). В результате получится волна. Это график функции y = sin x на отрезке [-π; π].

Можно продолжить волну, построив ее и на отрезке [π; 3π], [π; 5π], [π; 7π] и т.д. На всех этих отрезках график функции будет выглядеть так же, как на отрезке [-π; π]. Получится непрерывная волнистая линия с одинаковыми волнами.

 

Функция y = cos x.

Графиком функции является синусоида (ее иногда называют косинусоидой).

 

Свойства функции y = cos x:

1) Область определения функции – множество действительных чисел.

2) Область значений функции – отрезок [–1; 1]

3) Это четная функция.

4) Это непрерывная функция.

5) Координаты точек пересечения графика:
    - с осью абсцисс: (π/2 + πn; 0),
    - с осью ординат: (0;1).

6) На отрезке [0; π] функция убывает, на отрезке [π; 2π] – возрастает.

7) На промежутках [-π/2 + 2πn; π/2 + 2πn] функция принимает положительные значения.
    На промежутках [π/2 + 2πn; 3π/2 + 2πn] функция принимает отрицательные значения.

8) Промежутки возрастания: [-π + 2πn; 2πn].
    Промежутки убывания: [2πn; π + 2πn];

9) Точки минимума функции: π + 2πn.
    Точки максимума функции: 2πn.

10) Функция ограничена сверху и снизу. Наименьшее значение функции –1,
      наибольшее значение 1.

11) Это периодическая функция с периодом 2π (Т = 2π)

 

Функция y = mf(x).

Возьмем предыдущую функцию y = cos x. Как вы уже знаете, ее графиком является синусоида. Если мы умножим косинус этой функции на определенное число m, то волна растянется от оси x (либо сожмется, в зависимости от величины m).
Эта новая волна и будет графиком функции y = mf(x), где m – любое действительное число.

Таким образом, функция y = mf(x) – это привычная нам функция y = f(x), умноженная на m.

Если m < 1, то синусоида сжимается к оси x на коэффициент m. Если m > 1, то синусоида растягивается от оси x на коэффициент m.

 

Выполняя растяжение или сжатие, можно сначала построить лишь одну полуволну синусоиды, а затем уже достроить весь график.

 

Функция y = f(kx).

Если функция y = mf(x) приводит к растяжению синусоиды от оси x либо сжатию к оси x, то функция y = f(kx) приводит к растяжению от оси y либо сжатию к оси y.

Причем k – любое действительное число.

При 0 < k < 1 синусоида растягивается от оси y на коэффициент k. Если k > 1, то синусоида сжимается к оси y на коэффициент k.

 

Составляя график этой функции, можно сначала построить одну полуволну синусоиды, а по ней достроить затем весь график.

 

Функция y = tg x.

Графиком функции y = tg x является тангенсоида.

Достаточно построить часть графика на промежутке от 0 до π/2, а затем можно симметрично продолжить ее на промежутке от 0 до 3π/2.

  

Свойства функции y = tg x:

1) Область определения функции – множество всех действительных чисел, кроме чисел вида
x = π/2 + πk, где k – любое целое число.

Это означает, что на графике функции нет точки, принадлежащей прямой x = π/2,
либо прямой x = 3π/2, либо прямой x = 5π/2, либо прямой x = –π/2 и т.д.

2) Область значений функции (–∞; +∞)

3) Это нечетная функция.

4) Это непрерывная функция на интервале (–π/2; π/2).

5) Это периодическая функция с основным периодом π (Т = π)

6) Функция возрастает на интервале (–π/2; π/2).

7) Функция не ограничена ни сверху, ни снизу. Не имеет ни наименьшего, ни наибольшего значений.

 

Функция y = ctg x

Графиком функции y = ctg x также является тангенсоида (ее иногда называют котангенсоидой).

 

Свойства функции y = ctg x:

1) Область определения функции – множество всех действительных чисел, кроме чисел вида
x = πk, где k – любое целое число.

2) Область значений функции (–∞; +∞)

3) Это нечетная функция.

4) Это непрерывная функция.

5) Это периодическая функция с основным периодом π (Т = π)

6) Функция убывает в промежутке (πk; π + πk), где k – любое целое число.

7) Функция не ограничена ни сверху, ни снизу. Не имеет ни наименьшего, ни наибольшего значений.

 

Сделать бесплатный сайт с uCoz