Top.Mail.Ru

 

Геометрическая прогрессия

 

Геометрическая прогрессия – это такая последовательность отличных от нуля чисел, которая получается в результате умножения каждого последующего члена на одно и то же число, не равное нулю.

Пример геометрической прогрессии: 2, 6, 18, 54, 162.

Здесь каждый член после первого в 3 раза больше предыдущего. То есть каждый последующий член является результатом умножения предыдущего члена на 3:

2 · 3 = 6

6 · 3 = 18

18 · 3 = 54

54 · 3 = 162.

 

Знаменатель геометрической прогрессии.

Знаменатель геометрической прогрессии – это число, равное отношению второго и любого последующего члена к предыдущему члену прогрессии. Ее обычно обозначают буквой q.

В нашем примере при делении второго члена на первый, третьего на второй и т.д. мы получаем 3. Число 3 и является знаменателем данной геометрической прогрессии.

 

Свойства геометрической прогрессии:

1) Квадрат любого члена геометрической прогрессии, начиная со второго, равен произведению двух соседних членов, стоящих перед ним и после него:

bn2 = bn-1 · bn+1

 

2) Верно и обратное утверждение: если в последовательности чисел квадрат любого ее члена, начиная со второго, равен произведению двух соседних членов, стоящих перед ним и после него, то эта последовательность является геометрической прогрессией:

Пример:
Вернемся к нашей геометрической прогрессии 2, 6, 18, 54, 162. Возьмем четвертый член и возведем его в квадрат:

542 = 2916.

Теперь перемножим члены, стоящие слева и справа от числа 54:

18 · 162 = 2916.

Как видим, квадрат третьего члена равен произведению соседних второго и четвертого членов.

 

Как найти определенный член геометрической прогрессии.

Чтобы найти n-й член геометрической прогрессии, следует применить формулу:

bn = b1 · qn – 1

Пример 1: Возьмем некую геометрическую прогрессию, в которой первый член равен 2, а знаменатель геометрической прогрессии равен 1,5. Надо найти 4-й член этой прогрессии.

Дано:
b1 = 2
q = 1,5
n = 4
————
b4 - ?

Решение.
Применяем формулу bn = b1 · qn – 1, вставляя в нее соответствующие значения:

b4 = 2 · 1,54 – 1 = 2 · 1,53 = 2 · 3,375 = 6,75.

Ответ: Четвертый член заданной геометрической прогрессии – число 6,75.

 

Пример 2: Найдем пятый член геометрической прогрессии, если первый и третий члены равны соответственно 12 и 192.

Дано:
b1 = 12
b3 = 192
————
b5 - ?

Решение.

1) Сначала нам надо найти знаменатель геометрической прогрессии, без которой решить задачу невозможно. В качестве первого шага с помощью нашей формулы выводим формулу для b3:

b3 = b1 · q3 – 1 = b1 · q2

Теперь мы можем найти знаменатель геометрической прогрессии:

           b3       192
q2 = —— = —— = 16
           b1        12

q = √16 = 4 или –4.

2) Осталось найти значение b5.

Если q = 4, то

b5 = b1q5-1 = 12 · 44 = 12 · 256 = 3072.

При q = –4 результат будет тот же. Таким образом, задача имеет одно решение.

Ответ: Пятый член заданной геометрической прогрессии – это число 3072.

 

Как найти сумму первых n членов геометрической прогрессии.

При q ≠ 1 сумму любого количества первых членов геометрической прогрессии можно найти с помощью одной из следующих формул:

                                                                           bnq – b1
                                                                 
Sn = ————
                                                                              q – 1

                                                                            b1 (qn – 1)
                                                                   Sn = —————
                                                                                q – 1

Если q = 1, то все члены прогрессии просто равны первому члену:

                                                                              Sn = nb1

 

Пример: Найдем сумму первых пяти членов геометрической прогрессии (bn), в которой первый член равен 2, а знаменатель геометрической прогрессии 3.

Дано:

b1 = 2

q = 3

n = 5
————
S5 – ?

Решение.

Применяем вторую формулу из двух приведенных выше:

          b1 (q5 – 1)        2 (35 – 1)             2 · (243 – 1)                  484
S5 = ————— = ————— = ———————— = ————— = 242
              q – 1                3 – 1                        2                              2

Ответ: Сумма первых пяти членов заданной геометрической прогрессии равна 242.

 

Сумма бесконечной геометрической прогрессии.

Следует различать понятия «сумма бесконечной геометрической прогрессии» и «сумма n членов геометрической прогрессии». Второе понятие относится к любой геометрической прогрессии, а первое – только к такой, где знаменатель меньше 1 по модулю.

Сумма бесконечной геометрической прогрессии – это предельное число, к которому сходится последовательность прогрессии.

Говоря иначе, какой бы длинной не была геометрическая прогрессия, сумма ее членов не больше какого-то определенного числа и практически равна этому числу. Оно и называется суммой геометрической прогрессии.

Не любая геометрическая прогрессия имеет такую предельную сумму. Она может быть только у такой прогрессии, знаменатель которой – дробное число меньше 1.

 

Пример-пояснение:

Составим геометрическую прогрессию, в которой первый член – число 2, а знаметатель равен 1/2:

2, 1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64 и т.д.

Сложим все полученные члены прогрессии:

2 + 1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 = 255/64 ≈ 3,98 ≈ 4.

Можно продолжить прогрессию до 10, 100, миллиона членов, но во всех случаях сумма членов прогрессии будет практически равна 4. Число 4 и является суммой данной геометрической прогрессии.

Чтобы найти сумму бесконечной геометрической прогрессии, не надо складывать все ее члены. Для этого существует замечательная и довольно простая формула.

 

Сумма S геометрической прогрессии вычисляется по формуле:

                                                                                   b1
                                                                       S = ————
                                                                                 1 – q


b1 – первый член геометрической прогрессии; q – знаменатель прогрессии; |q| < 1.

 

Решим наш пример с помощью этой формулы.

В нем b1 = 2, q = 1/2. Итак:

               2                    2
S  =  ————  =  ———— = 4.
          1 – 1/2               1/2


Пример решен.

Сайт создан в системе uCoz