Целые и дробные рациональные уравнения
Рациональные уравнения – это уравнения, в которых и левая, и правая части являются рациональными выражениями.
(Напомним: рациональными выражениями называют целые и дробные выражения без радикалов, включающие действия сложения, вычитания, умножения или деления - например: 6x; (m – n)2; x/3y и т.п.)
Рациональное уравнение называется целым, или алгебраическим, если в нем нет деления на выражение, содержащее переменную.
Примеры целого рационального уравнения:
5x – 10 = 3(10 – x)
3x
— = 2x – 10
4
Если в рациональном уравнении есть деление на выражение, содержащее переменную (x), то уравнение называется дробно-рациональным.
Пример дробного рационального уравнения:
15
x + — = 5x – 17
x
Дробные рациональные уравнения обычно решаются следующим образом:
1) находят общий знаменатель дробей и умножают на него обе части уравнения; 2) решают получившееся целое уравнение; 3) исключают из его корней те, которые обращают в ноль общий знаменатель дробей.
|
Примеры решения целых и дробных рациональных уравнений.
Пример 1. Решим целое уравнение
x – 1 2x 5x
—— + —— = ——.
2 3 6
Решение:
Находим наименьший общий знаменатель. Это 6. Делим 6 на знаменатель и полученный результат умножаем на числитель каждой дроби. Получим уравнение, равносильное данному:
3(x – 1) + 4x 5х
—————— = ——
6 6
Поскольку в левой и правой частях одинаковый знаменатель, его можно опустить. Тогда у нас получится более простое уравнение:
3(x – 1) + 4x = 5х.
Решаем его, раскрыв скобки и сведя подобные члены:
3х – 3 + 4х = 5х
3х + 4х – 5х = 3
2х = 3
х = 3:2
x = 1,5.
Пример решен.
Пример 2. Решим дробное рациональное уравнение
x – 3 1 x + 5
—— + — = ———.
x – 5 x x(x – 5)
Решение:
Находим общий знаменатель. Это x(x – 5). Итак:
x2 – 3х x – 5 x + 5
——— + ——— = ———
x(x – 5) x(x – 5) x(x – 5)
Теперь снова освобождаемся от знаменателя, поскольку он одинаковый для всех выражений. Сводим подобные члены, приравниваем уравнение к нулю и получаем квадратное уравнение:
x2 – 3x + x – 5 = x + 5
x2 – 3x + x – 5 – x – 5 = 0
x2 – 3x – 10 = 0.
Решив квадратное уравнение, найдем его корни: –2 и 5.
Проверим, являются ли эти числа корнями исходного уравнения.
При x = –2 общий знаменатель x(x – 5) не обращается в нуль. Значит, –2 является корнем исходного уравнения.
При x = 5 общий знаменатель обращается в нуль, и два выражения из трех теряют смысл. Значит, число 5 не является корнем исходного уравнения.
Ответ: x = –2