Top.Mail.Ru

 

Касательная к графику функции

 

Касательная – это прямая, проходящая через точку кривой и совпадающая с ней в этой точке с точностью до первого порядка (рис.1).

Другое определение: это предельное положение секущей при Δx→0.

Пояснение: Возьмем прямую, пересекающую кривую в двух точках: А и b (см.рисунок). Это секущая. Будем поворачивать ее по часовой стрелке до тех пор, пока она не обретет только одну общую точку с кривой. Так мы получим касательную.

  

Строгое определение касательной:

Касательная к графику функции f, дифференцируемой в точке xо, - это прямая, проходящая через точку (xо; f(xо)) и имеющая угловой коэффициент f ′(xо). 


Угловой коэффициент имеет прямая вида y = kx + b.  Коэффициент k и является угловым коэффициентом этой прямой.

Угловой коэффициент равен тангенсу острого угла, образуемого этой прямой с осью абсцисс:

 
k = tg α

 
Здесь угол α – это угол между прямой y = kx + b и положительным (то есть против часовой стрелки) направлением оси абсцисс. Он называется углом наклона прямой (рис.1 и 2).
  Если угол наклона прямой y = kx + b острый, то угловой коэффициент является положительным числом. График возрастает (рис.1).

Если угол наклона прямой y = kx + b тупой, то угловой коэффициент является отрицательным числом. График убывает (рис.2).

Если прямая параллельна оси абсцисс, то угол наклона прямой равен нулю. В этом случае угловой коэффициент прямой тоже равен нулю (так как тангенс нуля есть ноль). Уравнение прямой будет иметь вид y = b (рис.3).

Если угол наклона прямой равен 90º (π/2), то есть она перпендикулярна оси абсцисс, то прямая задается равенством x = c, где c – некоторое действительное число (рис.4).

 

Уравнение касательной к графику функции y = f(x) в точке xо:


 y = f(xо) + f ′(xо) (x – xо)

 

Алгоритм решения уравнения касательной к графику функции y = f(x):

1. Вычислить f(xо).

2. Вычислить  производные f ′(x) и f ′(xо).

3. Внести найденные числа xо,  f(xо),  f ′(xо) в уравнение касательной и решить его.

 
Пример
: Найдем уравнение касательной к графику функции f(x) = x3 – 2x2 + 1 в точке с абсциссой 2.

Решение.

Следуем алгоритму.

1) Точка касания xо равна 2. Вычислим f(xо):

 f(xо) = f(2) = 23 – 2 ∙ 22 + 1 = 8 – 8 + 1 = 1

2) Находим f ′(x). Для этого применяем формулы дифференцирования, изложенные в предыдущем разделе. Согласно этим формулам, х2 = 2х, а х3 = 3х2. Значит:

f ′(x) = 3х2 – 2 ∙ 2х = 3х2 – 4х.

Теперь, используя полученное значение f ′(x), вычислим f ′(xо):

f ′(xо) = f ′(2) = 3 ∙ 22 – 4 ∙ 2 = 12 – 8 = 4.

3) Итак, у нас есть все необходимые данные: xо = 2, f(xо) = 1, f ′(xо) = 4. Подставляем эти числа в уравнение касательной и находим окончательное решение:

у = f(xо) + f ′(xо) (x – xо) = 1 + 4 ∙ (х – 2) = 1 + 4х – 8 = –7 + 4х = 4х – 7.

Ответ: у = 4х – 7.

 

Сайт создан в системе uCoz