Формулы приведения для тригонометрических функций
cos (π + t) = –cos t | sin (π + t) = –sin t | tg (π + t) = tg t | ctg (π + t) = ctg t |
cos (π – t) = –cos t | sin (π – t) = sin t | tg (π – t) = –tg t | ctg (π – t) = –ctg t |
cos (2π + t) = cos t | sin (2π + t) = sin t | tg (2π + t) = tg t | ctg (2π + t) = ctg t |
cos (2π – t) = cos t | sin (2π – t) = –sin t | tg (2π – t) = –tg t | ctg (2π – t) = –ctg t |
cos (π/2 + t) = –sin t | sin (π/2 + t) = cos t | tg (π/2 + t) = –ctg t | ctg (π/2 + t) = –tg t |
cos (π/2 – t) = sin t | sin (π/2 – t) = cos t | tg (π/2 – t) = ctg t | ctg (π/2 – t) = tg t |
cos (3π/2 + t) = sin t | sin (3π/2 + t) = –cos t | tg (3π/2 + t) = –ctg t | ctg (3π/2 + t) = –tg t |
cos (3π/2 – t) = –sin t | sin (3π/2 – t) = –cos t | tg (3π/2 – t) = ctg t | ctg (3π/2 – t) = tg t |